Jump to main content
Jump to site search

Issue 17, 2014

Physics and technological aspects of nanofluidics

Author affiliations

Abstract

From a physical perspective, nanofluidics represents an extremely rich domain. It hosts many mechanisms acting on the nanoscale, which combine together or interact with the confinement to generate new phenomena. Superfast flows in carbon nanotubes, nonlinear electrokinetic transport, slippage over smooth surfaces, nanobubble stability, etc. are the most striking phenomena that have been unveiled over the past few years, and some of them are still awaiting an explanation. One may anticipate that new nanofluidic effects will be discovered in the future, but at the moment, the technological barrier is high. Fabrication of nanochannels is most often a tour de force, slow and costly. However, with the accumulation of technological skills along with the use of new nanofluidic materials (like nanotubes), nanofluidics is becoming increasingly accessible to experimentalists. Among the technological challenges faced by the field, fabricating devices mimicking natural nanometric systems, such as aquaporins, ionic pumps or kidney osmotic filtering, seems the most demanding in terms of groundbreaking ideas. Nanoflow characterization remains delicate, although considerable progress has been achieved over the past years. The targeted application of nanofluidics is not only in the field of genomics and membrane science – with disruptive developments to be expected for water purification, desalination, and energy harvesting – but also for oil and gas production from unconventional reservoirs. Today, in view of the markets that are targeted, nanofluidics may well impact the industry more than microfluidics; this would represent an unexpected paradox. These successes rely on using a variety of materials and technologies, using state-of-the-art nanofabrication, or low-tech inexpensive approaches. As a whole, nanofluidics is a fascinating field that is facing considerable challenges today. It possesses a formidable potential and offers much space for creative groundbreaking ideas.

Graphical abstract: Physics and technological aspects of nanofluidics

Article information


Submitted
14 Mar 2014
Accepted
27 Jun 2014
First published
27 Jun 2014

Lab Chip, 2014,14, 3143-3158
Article type
Frontier
Author version available

Physics and technological aspects of nanofluidics

L. Bocquet and P. Tabeling, Lab Chip, 2014, 14, 3143 DOI: 10.1039/C4LC00325J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements