Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 1, 2014
Previous Article Next Article

Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments

Author affiliations

Abstract

Circulating tumor cells (CTCs) are malignant cells shed into the bloodstream from a tumor that have the potential to establish metastases in different anatomical sites. The separation and subsequent characterization of these cells is emerging as an important tool for both biomarker discovery and the elucidation of mechanisms of metastasis. Established methods for separating CTCs rely on biochemical markers of epithelial cells that are known to be unreliable because of epithelial-to-mesenchymal transition, which reduces expression for epithelial markers. Emerging label-free separation methods based on the biophysical and biomechanical properties of CTCs have the potential to address this key shortcoming and present greater flexibility in the subsequent characterization of these cells. In this review we first present what is known about the biophysical and biomechanical properties of CTCs from historical studies and recent research. We then review biophysical label-free technologies that have been developed for CTC separation, including techniques based on filtration, hydrodynamic chromatography, and dielectrophoresis. Finally, we evaluate these separation methods and discuss requirements for subsequent characterization of CTCs.

Graphical abstract: Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments

Back to tab navigation

Article information


Submitted
21 May 2013
Accepted
29 Jul 2013
First published
30 Jul 2013

Lab Chip, 2014,14, 32-44
Article type
Critical Review

Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments

C. Jin, S. M. McFaul, S. P. Duffy, X. Deng, P. Tavassoli, P. C. Black and H. Ma, Lab Chip, 2014, 14, 32
DOI: 10.1039/C3LC50625H

Social activity

Search articles by author

Spotlight

Advertisements