Issue 10, 2014

Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition

Abstract

Although II–VI semiconductors such as CdS, CdTe, CdSe, ZnTe, and alloys thereof can have nearly ideal band gaps and band-edge positions for the production of solar fuels, II–VI photoanodes are well-known to be unstable towards photocorrosion or photopassivation when in contact with aqueous electrolytes. Atomic-layer deposition (ALD) of amorphous, “leaky” TiO2 films coated with thin films or islands of Ni oxide has been shown to robustly protect Si, GaAs, and other III–V materials from photocorrosion and therefore to facilitate the robust, solar-driven photoelectrochemical oxidation of H2O to O2(g). We demonstrate herein that ALD-deposited 140 nm thick amorphous TiO2 films also effectively protect single crystalline n-CdTe photoanodes from corrosion or passivation. An n-CdTe/TiO2 electrode with a thin overlayer of a Ni-oxide based oxygen-evolution electrocatalyst produced 435 ± 15 mV of photovoltage with a light-limited current density of 21 ± 1 mA cm−2 under 100 mW cm−2 of simulated Air Mass 1.5 illumination. The ALD-deposited TiO2 films are highly optically transparent and electrically conductive. We show that an n-CdTe/TiO2/Ni oxide electrode enables the stable solar-driven oxidation of H2O to O2(g) in strongly alkaline aqueous solutions, where passive, intrinsically safe, efficient systems for solar-driven water splitting can be operated.

Graphical abstract: Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition

Supplementary files

Article information

Article type
Communication
Submitted
20 Jun 2014
Accepted
21 Aug 2014
First published
22 Aug 2014

Energy Environ. Sci., 2014,7, 3334-3337

Author version available

Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition

M. F. Lichterman, A. I. Carim, M. T. McDowell, S. Hu, H. B. Gray, B. S. Brunschwig and N. S. Lewis, Energy Environ. Sci., 2014, 7, 3334 DOI: 10.1039/C4EE01914H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements