Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 19, 2014

Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction

Author affiliations

Abstract

The correlation between chemical structure and dynamics has been explored in a series of molecules with increasing structural complexity in order to investigate its influence on bond cleavage reaction times in a photodissociation event. Femtosecond time-resolved velocity map imaging spectroscopy reveals specificity of the ultrafast carbon–iodine (C–I) bond breakage for a series of linear (unbranched) and branched alkyl iodides, due to the interplay between the pure reaction coordinate and the rest of the degrees of freedom associated with the molecular structure details. Full-dimension time-resolved dynamics calculations support the experimental evidence and provide insight into the structure–dynamics relationship to understand structural control on time-resolved reactivity.

Graphical abstract: Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction

Supplementary files

Article information


Submitted
21 Nov 2013
Accepted
18 Dec 2013
First published
24 Dec 2013

Phys. Chem. Chem. Phys., 2014,16, 8812-8818
Article type
Paper

Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction

M. E. Corrales, V. Loriot, G. Balerdi, J. González-Vázquez, R. de Nalda, L. Bañares and A. H. Zewail, Phys. Chem. Chem. Phys., 2014, 16, 8812 DOI: 10.1039/C3CP54677B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements