Issue 9, 2014

Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region

Abstract

We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance–voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a “fully-depleted” device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

Graphical abstract: Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region

Article information

Article type
Paper
Submitted
27 May 2013
Accepted
29 Nov 2013
First published
29 Nov 2013

Phys. Chem. Chem. Phys., 2014,16, 4193-4201

Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region

S. K. Saha, A. Guchhait and A. J. Pal, Phys. Chem. Chem. Phys., 2014, 16, 4193 DOI: 10.1039/C3CP52227J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements