Issue 40, 2013

Keratin-based antimicrobial textiles, films, and nanofibers

Abstract

The combination of appealing structural properties, biocompatibility, and the availability of renewable and inexpensive raw materials, make keratin-based materials attractive for a variety of applications. In this paper, we report on the antimicrobial functionalization of keratin-based materials, including wool cloth and regenerated cellulose/keratin composite films and nanofibers. The functionalization of these materials was accomplished utilizing a facile chlorination reaction that converts the nitrogen-bearing moieties of keratin into halamine compounds. Halamine-charged wool cloth exhibited rapid and potent bactericidal activity against several species of bacteria and induced up to a 5.3 log (i.e., 99.9995%) reduction in the colony forming units of Bacillus thuringiensis spores within 10 min. Keratin-containing composites were prepared by the spin coating and coaxial electrospinning of extracted/oxidized alpha-keratin and cellulose acetate (CA) solubilized in formic acid, followed by CA deacetylation. Regenerated cellulose/keratin materials chlorinated to display halamines were also effective in killing Escherichia coli and Staphylococcus aureus bacteria. Electrospun core/shell nanofibers engineered to maximize keratin-Cl surface area displayed higher activity against S. aureus than films composed of the same materials. The halamine-based antimicrobial functionalization methods demonstrated for keratin-based materials in this paper are anticipated to translate to other protein biopolymers of interest to the biomaterials community.

Graphical abstract: Keratin-based antimicrobial textiles, films, and nanofibers

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2013
Accepted
28 Aug 2013
First published
06 Sep 2013

J. Mater. Chem. B, 2013,1, 5505-5514

Keratin-based antimicrobial textiles, films, and nanofibers

M. B. Dickerson, A. A. Sierra, N. M. Bedford, W. J. Lyon, W. E. Gruner, P. A. Mirau and R. R. Naik, J. Mater. Chem. B, 2013, 1, 5505 DOI: 10.1039/C3TB20896F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements