Issue 47, 2013

Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries

Abstract

Relatively uniform sized graphene-encapsulated sulphur (GES) composites with a core (S)–shell (graphene) structure were synthesized in one pot based on a solution-chemical reaction–deposition method. These novel GES particles were characterized by XRD, Raman spectrometry, SEM, TGA, EDS and TEM. The electrochemical tests showed that the present GES composites exhibit high specific capacity, good discharge capacity retention and superior rate capability when they were employed as cathodes in rechargeable Li–S cells. A high sulphur content (83.3 wt%) was obtained in the GES composites. Stable discharge capacities of about 900, 650, 540 and 480 mA h g−1 were achieved at 0.75, 2.0, 3.0 and 6.0 C, respectively. The good electrochemical performance is attributed to the high electrical conductivity of the graphene, the reasonable particle size of sulphur particles, and the core–shell structures that have synergistic effects on facilitating good transport of electrons from the poorly conducting sulphur, preserving fast transport of lithium ions to the encapsulated sulphur particles, and alleviating the polysulfide shuttle phenomenon. The present finding may provide a significant contribution to the enhancement of cathodes for the lithium–sulphur battery technology.

Graphical abstract: Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2013
Accepted
30 Sep 2013
First published
01 Oct 2013

J. Mater. Chem. A, 2013,1, 15142-15149

Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries

H. Xu, Y. Deng, Z. Shi, Y. Qian, Y. Meng and G. Chen, J. Mater. Chem. A, 2013, 1, 15142 DOI: 10.1039/C3TA13541A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements