Issue 43, 2013

Realization of both high hydrogen selectivity and capacity in a guest responsive metal–organic framework

Abstract

Two newly designed semi-flexible tetratopic carboxylate ligands, 5′,5′′′′-(propane-2,2-diyl)bis(2′-methoxy-[1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylate) (pbtd-OMe4−) and 5′,5′′′′-(propane-2,2-diyl)bis(2′-ethoxy-[1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylate) (pbtd-OEt4−), have been used to connect dicopper paddlewheel building units to afford two isostructural metal–organic frameworks, Cu2(H2O)2(pbtd-OR)·xS (R = Me, PCN-38·xS; R = Et, PCN-39·xS, S represents noncoordinated guest molecules, PCN = porous coordination network) with novel structure and gas sorption properties upon activation. PCN-39 undergoes structural transformations upon guest solvent removal, leading to observation of distinct phases from in situ powder X-ray diffraction measurements, and exhibits selective adsorption of H2 (up to 2.0 wt%) over CO, CO2, and N2, which can be explained by optimized space-filling of the pendant ethoxy group. PCN-38 undergoes no transformation upon activation and exhibits hydrogen uptake up to 2.2 wt%, as well as moderate uptake of other gases. The selective adsorption of hydrogen over other gases highlights the potential application of PCN-39 in industrially important gas separation.

Graphical abstract: Realization of both high hydrogen selectivity and capacity in a guest responsive metal–organic framework

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2013
Accepted
07 Sep 2013
First published
10 Sep 2013

J. Mater. Chem. A, 2013,1, 13502-13509

Realization of both high hydrogen selectivity and capacity in a guest responsive metal–organic framework

T. A. Makal, W. Zhuang and H. Zhou, J. Mater. Chem. A, 2013, 1, 13502 DOI: 10.1039/C3TA12761C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements