Issue 41, 2013

High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers

Abstract

In this study, pristine multilayered graphene oxide (GO) was coated by established methods onto a thin-film nanofibrous composite (TFNC) mat to form a high flux membrane for ethanol dehydration. The thickness of the GO layer was controlled from 90 to 300 nm by taking advantage of the self-assembly behavior of GO sheets. The low transfer barrier of the TFNC mat provides a distinct advantage due to its large bulk porosity (80%) with fully interconnected pore structures. Ethanol dehydration experiments showed that a 93 nm thick GO membrane had a permeate flux of 2.2 (kg m−2 h−1) and a separation factor of 308 with a feed solution containing 80 wt% ethanol and 20% water at 70 °C, making the GO–TFNC system superior to commercial polymeric membranes. For example, the permeate flux of GO–TFNC is twice as high as that of the polyvinyl alcohol (PVA)-based commercial membrane. The morphology of the GO–TFNC membrane and the mechanism of water transport in the GO layer were also elucidated using SEM, TEM and grazing incidence wide-angle X-ray scattering (GIWAXS) techniques.

Graphical abstract: High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2013
Accepted
28 Aug 2013
First published
29 Aug 2013

J. Mater. Chem. A, 2013,1, 12998-13003

High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers

T. Yeh, Z. Wang, D. Mahajan, B. S. Hsiao and B. Chu, J. Mater. Chem. A, 2013, 1, 12998 DOI: 10.1039/C3TA12480K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements