Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 25, 2013
Previous Article Next Article

N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials

Author affiliations

Abstract

An N-functionalized strategy, including N-amination and N-trinitroethylamination, was utilized for the synthesis of nitroimidazole-based energetic materials, giving rise to a new family of highly insensitive N-aminonitroimidazoles and oxygen-rich N-trinitroethylaminonitroimidazoles with good to excellent properties. These new energetic materials were fully characterized by IR, 1H, and 13C NMR, elemental analysis, and some high performance compounds were further confirmed by 15N NMR (4a, 4d, 6a, 6b, and 6d), as well as single crystal X-ray diffraction (6a and 6b). N-Functionalization of nitroimidazoles not only gives rise to the N-aminonitroimidazoles as impact insensitive and thermally stable materials (IS > 40 J; Td: 144–308 °C), but also provides a series of N-trinitroethylaminoimidazoles, which have favorable densities (1.75–1.84 g cm−3), good detonation properties (P: 27.6–35.9 GPa; vD: 7815–8659 m s−1), and moderate thermal stabilities (136–172 °C). These properties are better than some known energetic compounds, such as TNT (P: 19.5 GPa; vD: 6881 m s−1) and TATB (P: 31.2 GPa; vD: 8114 m s−1), and are comparable to RDX (P: 35.0 GPa; vD: 8762 m s−1).

Graphical abstract: N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials

Back to tab navigation

Supplementary files

Article information


Submitted
03 Apr 2013
Accepted
10 May 2013
First published
13 May 2013

J. Mater. Chem. A, 2013,1, 7500-7510
Article type
Paper

N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials

P. Yin, Q. Zhang, J. Zhang, D. A. Parrish and J. M. Shreeve, J. Mater. Chem. A, 2013, 1, 7500
DOI: 10.1039/C3TA11356F

Social activity

Search articles by author

Spotlight

Advertisements