Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 17, 2013
Previous Article Next Article

Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries

Author affiliations

Abstract

Enhancement of the discharge capacity, high-rate capability, and cycle stability of the Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with a large specific capacity is highly significant for high energy lithium-ion batteries. In this work, the Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide is prepared by a spray-drying method. The surface modification with the Li–Mn–PO4 is introduced onto Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide for the first time. It is demonstrated that the surface of Li(Li0.17Ni0.25Mn0.58)O2 grains is coated with the thin amorphous Li–Mn–PO4 layer (5 wt%). With increasing calcination temperature after the surface coating, a strong interaction can be induced on the interface between the amorphous Li–Mn–PO4 layer and the top surface of Li(Li0.17Ni0.25Mn0.58)O2 grains. As anticipated, the discharge capacity and high-rate capability are obviously improved for the Li–Mn–PO4-coated sample after calcination at 400 °C, while excellent cycle stability is obtained for the Li–Mn–PO4-coated sample after calcination at 500 °C as compared with the as-prepared Li(Li0.17Ni0.25Mn0.58)O2 oxide during cycling. Apparently, the interface interaction between the amorphous Li–Mn–PO4 layer and the top surface of Li(Li0.17Ni0.25Mn0.58)O2 grains is responsible for the improvement of the reaction kinetics and the electrochemical cycle stability of Li–Mn–PO4-coated samples.

Graphical abstract: Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries

Back to tab navigation

Supplementary files

Article information


Submitted
04 Jan 2013
Accepted
26 Feb 2013
First published
15 Mar 2013

J. Mater. Chem. A, 2013,1, 5262-5268
Article type
Paper

Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries

Q. Q. Qiao, H. Z. Zhang, G. R. Li, S. H. Ye, C. W. Wang and X. P. Gao, J. Mater. Chem. A, 2013, 1, 5262
DOI: 10.1039/C3TA00028A

Social activity

Search articles by author

Spotlight

Advertisements