Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 31, 2013

Phase behavior of rigid, amphiphilic star polymers

Author affiliations

Abstract

We determine the phase behavior of rigid, amphiphilic diblock copolymer stars in solution, by employing a lattice model and applying Grand Canonical Monte Carlo simulations as well as histogram reweighting techniques. Previous studies on these systems [C. Koch et al., Mol. Phys., 2011, 109, 3049] have found that for fully flexible chains with a moderate functionality ranging from f = 3 to f = 10 and with a solvophilic A-block smaller than or equal to the solvophobic B-block, the solution undergoes a liquid–gas macrophase separation with a well-defined critical point. We find that the introduction of chain rigidity alters the critical parameters: the higher the stiffness, the higher the critical temperature Tc and the lower the critical density ϕc. Furthermore, we find that for high rigidities and densities beyond ϕc, the molecules arrange in cubic, columnar and lamellar ordered phases whose domain of stability depends on molecular architecture and block incompatibility. For even higher densities the system remelts again into another fluid phase. The resulting rich phase diagrams of star polymers that feature amphiphilicity and high rigidity are a manifestation of the character of these hybrid molecules as polymer-based, soft patchy colloids.

Graphical abstract: Phase behavior of rigid, amphiphilic star polymers

Article information


Submitted
24 Apr 2013
Accepted
22 May 2013
First published
23 May 2013

Soft Matter, 2013,9, 7424-7436
Article type
Paper

Phase behavior of rigid, amphiphilic star polymers

C. Koch, A. Z. Panagiotopoulos, F. Lo Verso and C. N. Likos, Soft Matter, 2013, 9, 7424 DOI: 10.1039/C3SM51135A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements