Issue 32, 2013

Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering

Abstract

Wrinkling is an important mechanical phenomenon that generates periodic topographical patterns across a surface. This paper presents experimental evidence that surface wrinkles, which form consequent to thin film magnetron sputtering of either indium tin oxide (ITO) or aluminum on poly(dimethylsiloxane) networks (PDMS-N) made from a commercial Sylgard-184 kit, result from chemical modification of the PDMS-N surface as opposed to extrinsic thermomechanical stresses originating from differential thermal expansion. X-ray photoelectron spectroscopy results reveal that the PDMS-N surface becomes depleted in carbon and concurrently enriched in oxygen relative to silicon due to sputtering. This silica-like surface layer possesses intrinsic compressive stress that leads to wrinkle formation during the first ≈5 seconds of sputtering. The wrinkles maintain their periodicity irrespective of the thickness of the ITO film formed during subsequent deposition. Furthermore, upon removal of the ITO layer, the wrinkles persist with their periodicity unchanged. A narrow sputtering pressure window between 2 and 12 mTorr generates wrinkles. Pressures below this range cannot sustain a radio frequency plasma, while pressures above this range provide sufficient thermalization of kinetic energy as to eliminate the energetic bombardment that modifies the PDMS-N. This study provides a new understanding of the origins of wrinkling in sputtered films on polymeric substrates and creates opportunities to manipulate the topography produced by spontaneous surface wrinkling.

Graphical abstract: Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering

Article information

Article type
Paper
Submitted
08 Apr 2013
Accepted
26 Jun 2013
First published
27 Jun 2013

Soft Matter, 2013,9, 7797-7803

Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering

M. D. Casper, A. Ö. Gözen, M. D. Dickey, J. Genzer and J. Maria, Soft Matter, 2013, 9, 7797 DOI: 10.1039/C3SM50966D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements