Issue 36, 2013

Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation

Abstract

We synthesized a novel hydrophilic, negatively charged block polymer composed of polyethylene glycol (PEG) and poly(methacrylic acid) (PMAA) using atom-transfer radical polymerization (ATRP). The encapsulation of a positively charged protein, represented by hen-egg white lysozyme, by mPEG-b-PMAA micelles was achieved using a pH or salt-concentration swing, as shown by both structural characterization using dynamic light scattering and transmission electron microscopy and an activity assay. All-atom molecular dynamics simulations showed that using an acidic pH gave a more compact polymer–micelle assembly than did using a basic pH. As a result, this compact structure had less solvent-accessible surface area (SASA), indicating that lysozyme was encapsulated by mPEG-b-PMAA and that the active site was shielded by the polymer. This made the active site less accessible to the substrate. These accounted for the low apparent activity at an acidic pH in our experiments. A neutral or basic pH intensified the electrostatic repulsive interaction, which prevented the formation of polymer–lysozyme complex. The molecular simulation indicated that encapsulation of lysozyme by the polymer micelles could be divided into two consecutive steps. The first step involved the attachment of the negatively charged polymer chain to the positively charged portion of lysozyme, driven by electrostatic attractive force. Then, the hydrophobic interaction between the polymer and lysozyme became dominant and led to a more compact assembly with a reduced energy state. These simulations agreed with our experimental observations and provided molecular insight helpful for the design, fabrication, and application of protein-incorporated polymer micelles.

Graphical abstract: Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2013
Accepted
18 Jul 2013
First published
18 Jul 2013

Soft Matter, 2013,9, 8723-8729

Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation

Y. Zhang, K. Han, D. Lu and Z. Liu, Soft Matter, 2013, 9, 8723 DOI: 10.1039/C3SM50586C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements