Issue 43, 2013

Rheology of cubic blue phases

Abstract

We study the behaviour of cubic blue phases under shear flow via lattice Boltzmann simulations. We focus on the two experimentally observed phases, Blue Phase I (BPI) and Blue Phase II (BPII). The disclination network of Blue Phase II continuously breaks and reforms under steady shear, leading to an oscillatory stress response in time. At larger shear rates, the structure breaks up into the Grandjean texture with a cholesteric helix lying along the flow gradient direction. Blue Phase I leads to a very different response. Here, oscillations are only possible for intermediate shear rates; very slow flow causes a transition of the initially ordered structure into an amorphous network with an apparent yield stress. Larger shear rates lead to another amorphous state with a different structure of the defect network. At even larger flow rates the same break-up into the Grandjean texture as for Blue Phase II is observed. At the highest imposed flow rates both cubic blue phases adopt a flow-aligned nematic state. Our results provide the first theoretical investigation of sheared blue phases in large systems, and are relevant for the understanding of the bulk rheology of these materials.

Graphical abstract: Rheology of cubic blue phases

Article information

Article type
Paper
Submitted
21 Jan 2013
Accepted
08 Aug 2013
First published
09 Sep 2013

Soft Matter, 2013,9, 10243-10256

Rheology of cubic blue phases

O. Henrich, K. Stratford, P. V. Coveney, M. E. Cates and D. Marenduzzo, Soft Matter, 2013, 9, 10243 DOI: 10.1039/C3SM50228G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements