Jump to main content
Jump to site search

Issue 43, 2013
Previous Article Next Article

Rheology of cubic blue phases

Author affiliations

Abstract

We study the behaviour of cubic blue phases under shear flow via lattice Boltzmann simulations. We focus on the two experimentally observed phases, Blue Phase I (BPI) and Blue Phase II (BPII). The disclination network of Blue Phase II continuously breaks and reforms under steady shear, leading to an oscillatory stress response in time. At larger shear rates, the structure breaks up into the Grandjean texture with a cholesteric helix lying along the flow gradient direction. Blue Phase I leads to a very different response. Here, oscillations are only possible for intermediate shear rates; very slow flow causes a transition of the initially ordered structure into an amorphous network with an apparent yield stress. Larger shear rates lead to another amorphous state with a different structure of the defect network. At even larger flow rates the same break-up into the Grandjean texture as for Blue Phase II is observed. At the highest imposed flow rates both cubic blue phases adopt a flow-aligned nematic state. Our results provide the first theoretical investigation of sheared blue phases in large systems, and are relevant for the understanding of the bulk rheology of these materials.

Graphical abstract: Rheology of cubic blue phases

Back to tab navigation

Article information


Submitted
21 Jan 2013
Accepted
08 Aug 2013
First published
09 Sep 2013

Soft Matter, 2013,9, 10243-10256
Article type
Paper

Rheology of cubic blue phases

O. Henrich, K. Stratford, P. V. Coveney, M. E. Cates and D. Marenduzzo, Soft Matter, 2013, 9, 10243
DOI: 10.1039/C3SM50228G

Social activity

Search articles by author

Spotlight

Advertisements