Issue 12, 2013

Droplet impact on superheated micro-structured surfaces

Abstract

When a droplet impacts upon a surface heated above the liquid's boiling point, the droplet either comes into contact with the surface and boils immediately (contact boiling), or is supported by a developing vapor layer and bounces back (film boiling, or Leidenfrost state). We study the transition between these characteristic behaviors and how it is affected by parameters such as impact velocity, surface temperature, and controlled roughness (i.e., micro-structures fabricated on silicon surfaces). In the film boiling regime, we show that the residence time of droplets impacting upon the surface strongly depends on the drop size. We also show that the maximum spreading factor Γ of droplets in this regime displays a universal scaling behavior Γ ∼ We3/10, which can be explained by taking into account the drag force of the vapor flow under the drop. This argument also leads to predictions for the scaling of film thickness and velocity of the vapor shooting out of the gap between the drop and the surface. In the contact boiling regime, we show that the structured surfaces induce the formation of vertical liquid jets during the spreading stage of impacting droplets.

Graphical abstract: Droplet impact on superheated micro-structured surfaces

Article information

Article type
Paper
Submitted
16 Nov 2012
Accepted
07 Jan 2013
First published
08 Feb 2013

Soft Matter, 2013,9, 3272-3282

Droplet impact on superheated micro-structured surfaces

T. Tran, H. J. J. Staat, A. Susarrey-Arce, T. C. Foertsch, A. van Houselt, H. J. G. E. Gardeniers, A. Prosperetti, D. Lohse and C. Sun, Soft Matter, 2013, 9, 3272 DOI: 10.1039/C3SM27643K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements