Issue 1, 2013

Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine

Abstract

Cationic colloidal systems composed of arginine based surfactants (single or gemini structures) and membrane additive compounds such as DLPC or cholesterol have been characterized by means of size distribution and zeta-potential measurements. The single or monocatenary surfactant (LAM) as well as the gemini with the shortest spacer chain (C6(LA)2) formed micelles, while aqueous solutions of pure gemini surfactants with longer spacers (C9(LA)2 and C12(LA)2) formed very big aggregates. The addition of phospholipids or cholesterol changed drastically the aggregation behaviour. In the case of LAM and C6(LA)2, the incorporation of additives gave rise to the formation of cationic vesicles. For C9(LA)2 and C12(LA)2, this type of additives promoted the formation of smaller aggregates. All the formulations had positive zeta-potential values and in general exhibited high colloidal stability. We also evaluated the hemolysis and the antimicrobial activity of these systems. The capability of disrupting erythrocyte membranes depends on the hydrophobicity of the molecules and the size of aggregates in the solution. Gemini surfactants with short spacer chains are more hemolytic than their single chain homologue, while gemini surfactants with long spacers are much less hemolytic than their single chain counterpart. Moreover, for the same formulation, the hemolysis depends on the initial concentration of the stock solution used to set up the hemolysis/concentration curve. Results show that small aggregates interact easily with these biological membranes. The alkyl spacer chain and the presence of additives also play an important role in the antimicrobial activity, and, in general, the interaction with bacteria and erythrocytes is affected by the same parameters. The physico-chemical and biological characterization of these systems might be important for several biotechnological applications in which cationic vesicular systems are involved.

Graphical abstract: Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine

Article information

Article type
Paper
Submitted
19 Jul 2012
Accepted
02 Oct 2012
First published
19 Oct 2012

Soft Matter, 2013,9, 306-319

Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine

L. Tavano, M. R. Infante, M. A. Riya, A. Pinazo, M. P. Vinardell, M. Mitjans, M. A. Manresa and L. Perez, Soft Matter, 2013, 9, 306 DOI: 10.1039/C2SM26670A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements