Issue 5, 2013

Revisiting the optical signatures of BODIPY with ab initio tools

Abstract

BODIPY dyes constitute one of the most efficient class of fluorescent molecules, yet their absorption and emission signatures are hardly predictable with theoretical tools. Here, we use a robust Time-Dependent Density Functional Theory approach that simultaneously accounts for solvent and vibrational effects, in order to simulate the optical properties of a large panel of BODIPY derivatives. In particular, this contribution is focussed on the accurate determination of both the 0–0 energies and vibronic shapes, that allow meaningful comparisons between experimental measurements and theoretical simulations. It turns out that Truhlar's M06-2X functional is well suited for modelling the variations of the 0–0 energies induced by side groups, modifications of the skeleton, stiffening or extension of the π-path. Indeed, while the absolute mean deviation remains quite sizeable, the determination coefficient between experimental and theoretical energies is exceptionally large (R2 = 0.98), highlighting the robustness of the proposed approach. In addition, for most BODIPYs, theory is able to accurately reproduce vibrationally resolved bands. The developed protocol was successfully applied to provide insights for both pH and ion sensors. It also allowed the understanding of the optical behaviours of a series of BODIPY dimers and NIR dyes. This constitutes an unprecedented investigation of several BODIPY dyes both in terms of the number of treated molecules (more than sixty) and of the reliability of the predictions.

Graphical abstract: Revisiting the optical signatures of BODIPY with ab initio tools

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Dec 2012
Accepted
14 Feb 2013
First published
14 Feb 2013

Chem. Sci., 2013,4, 1950-1963

Revisiting the optical signatures of BODIPY with ab initio tools

S. Chibani, B. Le Guennic, A. Charaf-Eddin, A. D. Laurent and D. Jacquemin, Chem. Sci., 2013, 4, 1950 DOI: 10.1039/C3SC22265A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements