Covalent immobilization of a polyoxometalate in a porous polymer matrix: a heterogeneous catalyst towards sustainability†
Abstract
The heterogenization of a polyoxometalate (POM) catalyst by direct covalent immobilization in polymer matrices with uniform macropores and high specific surface areas was reported. Via click chemistry, organically modified POM clusters were mainly “clicked” on the functionalized channel surface of a macroporous resin. The appraisement of the catalytic performance via catalysis on tetrahydrothiophene (THT) oxidation, demonstrates that the solid catalyst is efficient and has a high selectivity. More attractively, it could be reused several times without detectable catalytic activity loss. And no POM species were detected in the filtrate, stemming from the strong covalent bonding between the POM clusters and the macroporous resin surface. Evidently, such a catalyst heterogenization strategy helps to overcome the fatal leaching problem. Therefore the POM heterogeneous material can become an ideal candidate for industrial processes and will also have great potential in practical application not only for oxidative catalysis.