Issue 36, 2013

Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts

Abstract

A versatile electrochemical system for the non-aqueous electrodeposition of crystalline, oxide free p-block metals and metalloids is described, and it is demonstrated that by combining mixtures of these reagents, this system is suitable for electrodeposition of binary semiconductor alloys. The tetrabutylammonium halometallates, [NnBu4][InCl4], [NnBu4][SbCl4], [NnBu4][BiCl4], [NnBu4]2[SeCl6] and [NnBu4]2[TeCl6], are readily dissolved in CH2Cl2 and form reproducible electrochemical systems with good stability in the presence of a [NnBu4]Cl supporting electrolyte. The prepared electrolytes show a wide potential window and the electrodeposition of indium, antimony, bismuth, tellurium and selenium on glassy carbon and titanium nitride electrodes has been demonstrated. The deposited elements were characterised by scanning electron microscopy, energy dispersive X-ray analysis and powder X-ray diffraction. The compatibility of the reagents permits the preparation of a single electrolyte containing several halometallate species which allows the electrodeposition of binary materials, as is demonstrated for InSb. This room temperature, ‘bottom-up’ electrochemical approach should thus be suitable for the one-pot deposition of a wide range of compound semiconductor materials.

Graphical abstract: Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts

Article information

Article type
Paper
Submitted
11 Feb 2013
Accepted
04 Jul 2013
First published
04 Jul 2013

RSC Adv., 2013,3, 15645-15654

Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts

P. N. Bartlett, D. Cook, C. H. (. de Groot, A. L. Hector, R. Huang, A. Jolleys, G. P. Kissling, W. Levason, S. J. Pearce and G. Reid, RSC Adv., 2013, 3, 15645 DOI: 10.1039/C3RA40739J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements