SnO2@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO2 for enhanced photodetection and photocatalysis
Abstract
Rationally designed SnO2@CdS nanowire-quantum dots (QDs) heterostructures were realized by a wet-chemical method via hydroxide cluster growth mechanism on high crystalline quality SnO2 nanowires, which were synthesized by a vapor transport method. The heterostructures showed enhanced photon harvesting capability and photodetection sensitivity at visible regime than that of wide band gap homogeneous SnO2 nanowires, as characterized by UV-Vis absorption and photoconductivity measurements. In addition, the SnO2@CdS nanowire-QDs heterostructures showed enhanced photocatalytic activity by more than 109% in a conceptual demonstration of photodegradation of methylene blue solution. Our results suggest that the SnO2@CdS nanowire-QDs heterostructures exhibit considerable promise for highly sensitive visible-light photodetectors and highly efficient photocatalysis.