Issue 19, 2013

Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties

Abstract

The intentional introduction of transition metal impurities into semiconductor nanocrystals is an attractive approach for tuning quantum dot photoluminescence emission. Particularly, doping of ZnS quantum dots with Mn2+ (Mn:ZnS QDs) results in a phosphorescence-type emission, attributed to the incorporation of manganese ions into the nanocrystal structure, so that delayed radiational deactivation of the energy of nanoparticles, excited through the energy levels of the metal, is enabled. However, the development of effective doping strategies can be challenging, especially if a highly efficient photoluminescent emission within a known crystalline core structure, is required (e.g. for analytical phosphorescence applications). The spectroscopic properties and the crystal structure of Mn2+-doped ZnS QDs are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the presence of Mn2+ and its concentration used during the synthesis. In order to further control and optimize the synthesis of doped QDs for future bioanalytical applications, different complementary techniques including photoluminescence and X-ray powder diffraction have been employed. The information obtained has allowed standardization of the synthesis conditions of these doped QDs and the identification and quantification of the crystal phases obtained under different synthesis conditions.

Graphical abstract: Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2013
Accepted
09 Jul 2013
First published
16 Jul 2013

Nanoscale, 2013,5, 9156-9161

Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties

E. Sotelo-Gonzalez, L. Roces, S. Garcia-Granda, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez and A. Sanz-Medel, Nanoscale, 2013, 5, 9156 DOI: 10.1039/C3NR02422A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements