Issue 16, 2013

Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems

Abstract

We fabricate and characterize asymmetric memristors which show a very strong single-sided hysteresis. When biased in one direction there is hysteresis and in the opposite direction there is a lack of hysteresis. We demonstrate that this apparent lack is actually hysteresis on a much faster time-scale. We further demonstrate that this form of asymmetric behavior correlates very well to the asymmetric structure and function of an actual synapse. The asymmetric memristor device presented here is necessary to correctly implement spike-timing-dependent-plasticity STDP in mixed memristor/neuron hybrid systems as an artificial synapse. These devices show the required characteristics for implementing the asymmetric form of long-term potentiation (LTP) and long-term depression (LTD) of a synapse between two neurons, where symmetric memristor devices do not. Signals from a presynaptic neuron are sent via its axon across the synapse to the dendrite of a postsynaptic neuron. Postsynaptic neuron signals sent to subsequent neurons have an influence on the strength of any further presynaptic neuron signals received by the postsynaptic neuron across the synapse. These signals are grouped into spike triplets within the framework of STDP and, as we experimentally show here, can be implemented with asymmetric memristors, not standard symmetric memristors.

Graphical abstract: Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems

Article information

Article type
Paper
Submitted
12 Apr 2013
Accepted
17 Jun 2013
First published
19 Jun 2013

Nanoscale, 2013,5, 7297-7303

Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems

A. Williamson, L. Schumann, L. Hiller, F. Klefenz, I. Hoerselmann, P. Husar and A. Schober, Nanoscale, 2013, 5, 7297 DOI: 10.1039/C3NR01834B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements