Issue 16, 2013

Nonlinear optical properties of boron doped single-walled carbon nanotubes

Abstract

Single-walled carbon nanotubes (SWCNTs) exhibit excellent nonlinear optical (NLO) properties due to the delocalized π electron states present along their tube axis. Using the open aperture Z-scan method in tandem with X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, we demonstrate the simultaneous tailoring of both electronic and NLO properties of SWCNTs, from ultrafast (femtosecond) to relatively slow (nanosecond) timescales, by doping with a single substituent, viz., boron. SWCNTs were doped via a wet chemical method using B2O3, and the boron content and bonding configurations were identified using XPS. While in the ns excitation regime, the nonlinear absorption was found to increase with increasing boron concentration in the SWCNTs (due to the increasing disorder and enhanced metallicity of the SWCNTs), the saturation intensity in the fs excitation regime decreased. We attribute this counter-intuitive behavior to excited state absorption on ns timescales, and saturable absorption combined with weak two-photon transitions on fs timescales between van Hove singularities.

Graphical abstract: Nonlinear optical properties of boron doped single-walled carbon nanotubes

Article information

Article type
Paper
Submitted
10 Apr 2013
Accepted
28 May 2013
First published
03 Jun 2013

Nanoscale, 2013,5, 7271-7276

Nonlinear optical properties of boron doped single-walled carbon nanotubes

B. Anand, R. Podila, P. Ayala, L. Oliveira, R. Philip, S. S. Sankara Sai, A. A. Zakhidov and A. M. Rao, Nanoscale, 2013, 5, 7271 DOI: 10.1039/C3NR01803B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements