Jump to main content
Jump to site search

Issue 12, 2013
Previous Article Next Article

Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2−xNx derived from the ethylenediamine-based complex

Author affiliations

Abstract

A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g−1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol–gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption–desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.

Graphical abstract: Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2−xNx derived from the ethylenediamine-based complex

Back to tab navigation

Article information


Submitted
19 Jan 2013
Accepted
06 Apr 2013
First published
10 Apr 2013

Nanoscale, 2013,5, 5396-5402
Article type
Paper

Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2−xNx derived from the ethylenediamine-based complex

Z. Jiang, L. Kong, F. Sh. Alenazey, Y. Qian, L. France, T. Xiao and P. P. Edwards, Nanoscale, 2013, 5, 5396
DOI: 10.1039/C3NR00344B

Social activity

Search articles by author

Spotlight

Advertisements