Issue 3, 2013

ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells

Abstract

Photoelectrode made of nanocable structure of ZnO nanorods (NR) coated with TiO2 nanosheets (NSs) was investigated for CdS/CdSe quantum dot co-sensitized solar cells. ZnO NRs prepared solution reaction at 60 °C served as the backbone for direct electron transport in view of the single crystallinity of the ZnO NRs and the high electron mobility of ZnO semiconductor. Anatase TiO2 NSs with the thickness of ∼10 nm and the length of ∼100 nm were assembled onto the surface of ZnO NRs via a solvothermal method. It was found that the thin shell of TiO2 might have remarkable influence on the quantum dot sensitized solar cells (QDSCs) through (a) increasing the surface area of ZnO NRs to allow for adsorbing more quantum dots (QDs), which led to high short current density, (b) forming an energy barrier that hindered the electrons in the ZnO from being back to the electrolyte and QDs, and thus, reduced the charge recombination rate, resulting in prolonged electron lifetime and enhanced open voltage. In comparison with the case of ZnO NRs, the short-circuit current density, open-circuit voltage, fill factor and charge recombination resistance of ZnO/TiO2 nanocable photoelectrode increase by 3%, 44%, 48% and 220%, respectively. As a result, a power conversion efficiency of 2.7% of QDSCs with core–shell structural nanocable photoelectrode has been obtained, which is as much as 230% of that of 1.2% obtained for ZnO NR photoelectrode.

Graphical abstract: ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells

Article information

Article type
Paper
Submitted
07 Sep 2012
Accepted
31 Oct 2012
First published
05 Nov 2012

Nanoscale, 2013,5, 936-943

ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells

J. Tian, Q. Zhang, L. Zhang, R. Gao, L. Shen, S. Zhang, X. Qu and G. Cao, Nanoscale, 2013, 5, 936 DOI: 10.1039/C2NR32663A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements