Issue 3, 2013

Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations

Abstract

Rho-associated protein kinases (ROCK1 and ROCK2) are promising targets for a number of diseases, including cardiovascular disorders, nervous system diseases, cancers, etc. Recently, we have successfully identified a ROCK1 inhibitor (1) with the triazine core. In order to gain a deeper insight into the microscopic binding of this inhibitor with ROCK1 and design derivatives with improved potency, the interactions between ROCK1 and a series of triazine/pyrimidine-based inhibitors were studied by using an integrated computational protocol that combines molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis. First, three docking protocols, rigid receptor docking, induced fit docking, QM-polarized ligand docking, were used to determine the binding modes of the studied inhibitors in the active site of ROCK1. The results illustrate that rigid receptor docking achieves the best performance to rank the binding affinities of the studied inhibitors. Then, based on the predicted structures from molecular docking, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The binding free energies predicted by MM/GBSA are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. In addition, the residue–inhibitor interaction spectra were obtained by the MM/GBSA free energy decomposition analysis, and the important residues for achieving strong binding were highlighted, which affords important guidance for the rational design of novel ROCK inhibitors. Finally, a variety of derivatives of inhibitor 1 were designed and four of them showed promising potency according to the predictions. We expect that our study can provide significant insight into the development of improved inhibitors of ROCK1.

Graphical abstract: Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2012
Accepted
19 Dec 2012
First published
20 Dec 2012

Mol. BioSyst., 2013,9, 361-374

Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations

M. Shen, S. Zhou, Y. Li, P. Pan, L. Zhang and T. Hou, Mol. BioSyst., 2013, 9, 361 DOI: 10.1039/C2MB25408E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements