Ultrahigh-throughput sorting of microfluidic drops with flow cytometry†
Abstract
The detection and sorting of aqueous drops is central to microfluidic workflows for high-throughput biology applications, including directed evolution, digital PCR, and antibody screening. However, high-throughput detection and sorting of drops require optical systems and microfluidic components that are complex, difficult to build, and often yield inadequate sensitivity and throughput. Here, we demonstrate a general method to harness flow cytometry, with its unmatched speed and sensitivity, for droplet-based microfluidic sorting.