Issue 12, 2013

A microfluidic impedance flow cytometer for identification of differentiation state of stem cells

Abstract

This paper presents a microfluidic electrical impedance flow cytometer (FC) for identifying the differentiation state of single stem cells. This device is comprised of a novel dual micropore design, which not only enhances the processing throughput, but also allows the associated electrodes to be used as a reference for one another. A signal processing algorithm, based on the support vector machine (SVM) theory, and a data classification method were developed to automate the identification of sample types and cell differentiation state based on measured impedance values. The device itself was fabricated using a combination of standard and soft lithography techniques to generate a PDMS-gold electrode construct. Experimental testing with non-biological particles and mouse embryonic carcinoma cells (P19, undifferentiated and differentiated) was carried out using a range of excitation frequencies. The effects of the frequency and the interrogation parameters on sample identification performance were investigated. It was found that the real and imaginary part of the detected impedance signal were adequate for distinguishing the undifferentiated P19 cells from non-biological polystyrene beads at all tested frequencies. A higher frequency and an opacity index were required to resolve the undifferentiated and differentiated P19 cells by capturing capacitive changes in electrophysiological properties arising from differentiation. The experimental results demonstrated salient accuracy of the device and algorithm, and established its feasibility for non-invasive, label-free identification of the differentiation state of the stem cells.

Graphical abstract: A microfluidic impedance flow cytometer for identification of differentiation state of stem cells

Article information

Article type
Paper
Submitted
30 Nov 2012
Accepted
25 Mar 2013
First published
26 Mar 2013

Lab Chip, 2013,13, 2300-2310

A microfluidic impedance flow cytometer for identification of differentiation state of stem cells

H. Song, Y. Wang, J. M. Rosano, B. Prabhakarpandian, C. Garson, K. Pant and E. Lai, Lab Chip, 2013, 13, 2300 DOI: 10.1039/C3LC41321G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements