Jump to main content
Jump to site search

Issue 8, 2013
Previous Article Next Article

Guidance of collective cell migration by substrate geometry

Author affiliations


Collective behavior refers to the emergence of complex migration patterns over scales larger than those of the individual elements constituting a system. It plays a pivotal role in biological systems in regulating various processes such as gastrulation, morphogenesis and tissue organization. Here, by combining experimental approaches and numerical modeling, we explore the role of cell density (‘crowding’), strength of intercellular adhesion (‘cohesion’) and boundary conditions imposed by extracellular matrix (ECM) proteins (‘constraints’) in regulating the emergence of collective behavior within epithelial cell sheets. Our results show that the geometrical confinement of cells into well-defined circles induces a persistent, coordinated and synchronized rotation of cells that depends on cell density. The speed of such rotating large-scale movements slows down as the density increases. Furthermore, such collective rotation behavior depends on the size of the micropatterned circles: we observe a rotating motion of the overall cell population in the same direction for sizes of up to 200 μm. The rotating cells move as a solid body, with a uniform angular velocity. Interestingly, this upper limit leads to length scales that are similar to the natural correlation length observed for unconfined epithelial cell sheets. This behavior is strongly altered in cells that present a downregulation of adherens junctions and in cancerous cell types. We anticipate that our system provides a simple and easy approach to investigate collective cell behavior in a well-controlled and systematic manner.

Graphical abstract: Guidance of collective cell migration by substrate geometry

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 Mar 2013, accepted on 22 May 2013 and first published on 29 May 2013

Article type: Paper
DOI: 10.1039/C3IB40054A
Citation: Integr. Biol., 2013,5, 1026-1035

Search articles by author