Volume 166, 2013

Electrospinning of peptide and protein fibres: approaching the molecular scale

Abstract

For the example of peptides and proteins, we contrast “natural” self-assembly, i.e. aggregation in solutions, with “forced” assembly by electrospinning, i.e. by application of strong electrical fields to concentrated solutions. We were able to spin fibres that contain short stretches of diameters down to 5 nm; the ultimate aim is a fibre of the size of a single molecule. Besides their wide biochemical relevance, small peptides can assemble to defined supramolecular structures such as fibres and tubes. While the main driving mechanism in electrospinning is certainly based on electrostatics, aromatic groups in peptides might play a directing role. We used fluorenyl and phenyl, whose π-stacking is not manifested in vibrational spectra, but is clearly visible in their crystal structures. The main differences between solid phases and single molecules are found for O–H and N–H stretching and bending vibrations, due to extensive hydrogen bonding in solids. However, we found that only proteins, but not peptides, can be spun into ultrathin fibres. Therefore, nanoscale analysis by SEM and AFM, and by infrared near-field microscopy are especially useful. The comparison of the amide bands from the infrared and Raman spectra, combined with circular dichroism spectroscopy, allowed us to assign secondary structures. Our results are not only useful for interpreting and refining current theories of self-assembly and electrospinning, but also for creating new scaffolds for the growth of sensitive cells.

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2013
Accepted
02 Jul 2013
First published
16 Dec 2013

Faraday Discuss., 2013,166, 209-221

Electrospinning of peptide and protein fibres: approaching the molecular scale

W. Nuansing, D. Frauchiger, F. Huth, A. Rebollo, R. Hillenbrand and A. M. Bittner, Faraday Discuss., 2013, 166, 209 DOI: 10.1039/C3FD00069A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements