Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Here, we studied the self-assembly of two peptide amphiphiles, C16-Gly-Gly-Gly-Arg-Gly-Asp (PA 1: C16-GGG-RGD) and C16-Gly-Gly-Gly-Arg-Gly-Asp-Ser (PA 2: C16-GGG-RGDS). We showed that PA 1 and PA 2 self-assemble into nanotapes with an internal bilayer structure. C16 chains were highly interdigitated within the nanotape cores, while the peptide blocks formed water-exposed β-sheets too. PA 1 nanotapes were characterized by one spacing distribution, corresponding to a more regular internal structure than that of PA 2 nanotapes, which presented two different spacing distributions. We showed that it is possible to obtain homogeneous nanotapes in water by co-assembling PA 1 or PA 2 with the negatively charged diluent C16-Glu-Thr-Thr-Glu-Ser (PA 3: C16-ETTES). The homogeneous tapes formed by PA 1–PA 3 or PA 2–PA 3 mixtures presented a structure similar to that observed for the corresponding pure PA 1 or PA 2 nanotapes. The mixed nanotapes, which were able to form a stabilized matrix containing homogeneously distributed cell adhesive RGD groups, represent promising materials for designing new cell adhesion substrates.


Page: ^ Top