The heteroaromatic ultraviolet chromophore pyrrole is found as a subunit in a number of important biomolecules: it is present in heme, the non-protein component of hemoglobin, and in the amino acid tryptophan. To date there have been several experimental studies, in both the time- and frequency-domains, which have interrogated the excited state dynamics of pyrrole. In this work, we specifically aim to unravel any differences in the H-atom elimination dynamics from pyrrole across an excitation wavelength range of 250–200 nm, which encompasses: (i) direct excitation to the (formally electric dipole forbidden) 11πσ* (1A2) state; and (ii) initial photoexcitation to the higher energy 1ππ* (1B2) state. This is achieved by using a combination of ultrafast time-resolved ion yield and time-resolved velocity map ion imaging techniques in the gas phase. Following direct excitation to 11πσ* (1A2) at 250 nm, we observe a single time-constant of 126 ± 28 fs for N–H bond fission. We assign this to tunnelling out of the quasi-bound 3s Rydberg component of the 11πσ* (1A2) surface in the vertical Franck–Condon region, followed by non-adiabatic coupling through a 11πσ*/S0 conical intersection to yield pyrrolyl radicals in their electronic ground state (C4H4N(![[X with combining tilde]](https://www.rsc.org/images/entities/char_0058_0303.gif) )) together with H-atoms. At 238 nm, direct excitation to, and N–H dissociation along, the 11πσ* (1A2) surface is observed to occur with a time-constant of 46 ± 22 fs. Upon initial population of the 1ππ* (1B2) state at 200 nm, a rapid 1ππ* (1B2) → 11πσ* (1A2) → N–H fission process takes place within 52 ± 12 fs. In addition to ultrafast N–H bond cleavage at 200 nm, we also observe the onset of statistical unimolecular H-atom elimination from vibrationally hot S0 ground state species, formed after the relaxation of excited electronic states, with a time-constant of 1.0 ± 0.4 ns. Analogous measurements on pyrrole-d1 reveal that these statistical H-atoms are released only through C–H bond cleavage.
)) together with H-atoms. At 238 nm, direct excitation to, and N–H dissociation along, the 11πσ* (1A2) surface is observed to occur with a time-constant of 46 ± 22 fs. Upon initial population of the 1ππ* (1B2) state at 200 nm, a rapid 1ππ* (1B2) → 11πσ* (1A2) → N–H fission process takes place within 52 ± 12 fs. In addition to ultrafast N–H bond cleavage at 200 nm, we also observe the onset of statistical unimolecular H-atom elimination from vibrationally hot S0 ground state species, formed after the relaxation of excited electronic states, with a time-constant of 1.0 ± 0.4 ns. Analogous measurements on pyrrole-d1 reveal that these statistical H-atoms are released only through C–H bond cleavage.
    
         
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?