Volume 161, 2013

Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface

Abstract

Pulmonary surfactant is a lipid–protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (<2 mN m−1) during the film compression that occurs at end-expiration. The particular lipid composition of surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression–expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP-B and SP-C establish membrane–membrane interactions coupling the stacks of different segregated phases. The low compressibility of surfactant films that leads to the maximal pressures (minimal tensions) is supported on one hand by the highly packed solid-like character of segregated DPPC-enriched domains and, on the other hand, by a high cohesivity of multilayered structures promoted by hydrophobic surfactant proteins, in particular SP-B, at the more dynamic disordered membrane regions, in which SP-B selectively partitions. Cryo-electron microscopy has shown that SP-B induces formation of tight membrane–membrane contacts, a finding that supports our inference concerning the role of these surfactant proteins.

Article information

Article type
Paper
Submitted
02 May 2012
Accepted
09 Jul 2012
First published
10 Jul 2012

Faraday Discuss., 2013,161, 535-548

Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface

J. Bernardino de la Serna, R. Vargas, V. Picardi, A. Cruz, R. Arranz, J. M. Valpuesta, L. Mateu and J. Pérez-Gil, Faraday Discuss., 2013, 161, 535 DOI: 10.1039/C2FD20096A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements