Issue 12, 2013

Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures

Abstract

Photocatalytic generation of hydrogen by using the hybrid nanostructures, ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex, has been studied under UV-visible and visible irradiation by employing Na2S and Na2SO3 as hole scavengers. Good H2 evolution rates up to 17.4 mmol h−1 g−1 and an apparent quantum yield (AQY) of 11.1% were obtained with ZnO/Pt/CdS under UV-visible irradiation. With the visible irradiation alone, the rate of H2 production was slower. With 20% Zn substitution in place of Cd in CdS, the rate of H2 generation was 31.2 mmol h−1 g−1 and 12.5 mmol h−1 g−1 respectively with UV-visible and visible irradiation, the corresponding AQY values being 23.1% and 18%. With 50% substitution of S by Se in CdS, the rate of hydrogen generation was at 19 mmol h−1 g−1 and 16 mmol h−1 g−1 with UV-visible and visible irradiation respectively, but the AQY values were in the range of 8–9%. Replacing Na2S and Na2SO3 by benzyl alcohol as the scavenger improves the catalytic activity of ZnO/Pt/CdS yielding H2 at the rate of 31.6 mmol h−1 g−1 and AQY of 34.5% under visible irradiation. The results were even more remarkable with ZnO/Pt/Cd0.8Zn0.2S where the rate was 36.5 mmol h−1 g−1 and the AQY reached 50.4% with visible irradiation. A noteworthy feature of the present study is that the hybrid nanostructures were prepared by simple solution processing involving sequential addition of reagents to ZnO nanoparticles in methanol medium.

Graphical abstract: Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures

Supplementary files

Article information

Article type
Communication
Submitted
02 Aug 2013
Accepted
21 Aug 2013
First published
21 Aug 2013

Energy Environ. Sci., 2013,6, 3589-3594

Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures

S. R. Lingampalli, U. K. Gautam and C. N. R. Rao, Energy Environ. Sci., 2013, 6, 3589 DOI: 10.1039/C3EE42623H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements