Issue 9, 2013

$ per W metrics for thermoelectric power generation: beyond ZT

Abstract

Thermoelectric materials for power generation are typically compared using the dimensionless figure-of-merit ZT because it relates directly to the device efficiency. However, for practical applications, the cost of power generation – as governed by material, manufacturing, and heat exchanger costs – is also a critical factor which is not captured in ZT alone. The necessary analysis, derived herein, optimizes the coupled thermoelectric and economic problem for the leg length, L, and system fill factor, F, as functions of these costs. Fuel, operating, and maintenance costs are excluded. This optimization yields the minimum $ per W value for thermoelectric power generation and a framework for comparing materials beyond ZT. This analysis shows that even very expensive thermoelectric materials have the potential to be the most cost effective at the system level, if incorporated with sufficiently short legs and small fill factor. An approximate scaling analysis, verified using numerical calculations, gives the first closed-form, analytical expressions for optimal L and F to minimize $ per W. The analysis also delineates various cost-dominant regimes with different priorities for materials development, including: (i) a heat exchanger cost dominated regime, where ZT should be increased regardless of material or manufacturing costs; (ii) an areal cost, C′′, dominated regime at fixed F, where ZT/C′′ should be maximized, and (iii) a volumetric cost, C′′′, dominated regime at fixed F, where ZT/(kC′′′) should be maximized, reinforcing the need for low thermal conductivity, k. The cost–performance framework derived here will be applied to a number of real materials and applications in a separate manuscript.

Graphical abstract: $ per W metrics for thermoelectric power generation: beyond ZT

Associated articles

Supplementary files

Article information

Article type
Analysis
Submitted
01 May 2013
Accepted
18 Jun 2013
First published
18 Jun 2013

Energy Environ. Sci., 2013,6, 2561-2571

$ per W metrics for thermoelectric power generation: beyond ZT

S. K. Yee, S. LeBlanc, K. E. Goodson and C. Dames, Energy Environ. Sci., 2013, 6, 2561 DOI: 10.1039/C3EE41504J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements