Issue 2, 2014

Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis

Abstract

Proton exchange membrane steam electrolyzers suffer from insufficient catalyst activity and durability due to the slow reaction kinetics for oxygen evolution reaction (OER) and poor durability under harsh operating environments. Aiming at enhancement of oxygen electrode kinetics and durability, composite support materials for iridium oxide are synthesized via in situ phosphorization reaction on tin doped indium oxide and possess functionalities of high electronic and intrinsic proton conductivity. At 130 °C under a water vapor atmosphere an overall conductivity of 0.72 S cm−1 is achieved with a contribution of around 10−2 S cm−1 proton conductivity. The support structure of three-dimensionally ordered hexagonal arrays displays a high specific surface area of 180 m2 g−1. Benefiting from the mixed conductivities and porous structure in the composite support materials, the supported IrO2 catalysts exhibit about five times enhancement of the OER activity in acidic electrolytes. The improved catalytic performance for the OER was further confirmed by PEM electrolyzer tests at 130 °C. A test of such a steam electrolyzer cell at 350 mA cm−2 shows good durability within a period of up to 1150 hours.

Graphical abstract: Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2013
Accepted
29 Nov 2013
First published
02 Dec 2013

Energy Environ. Sci., 2014,7, 820-830

Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis

J. Xu, D. Aili, Q. Li, E. Christensen, J. O. Jensen, W. Zhang, M. K. Hansen, G. Liu, X. Wang and N. J. Bjerrum, Energy Environ. Sci., 2014, 7, 820 DOI: 10.1039/C3EE41438H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements