Issue 3, 2013

Effect of synthetic accessibility on the commercial viability of organic photovoltaics

Abstract

For organic photovoltaics (OPVs) to become a viable source of renewable energy, the synthesis of organic active-layer materials will need to be scaled to thousands of kilograms. Additionally, the ultimate cost of these materials will need to be low enough to constitute only a small fraction of the cost of the solar cell module. In this study, we present a quantitative analysis, based on published small-scale synthetic procedures, to estimate the materials costs for several promising OPV materials when produced in large quantities. The cost in dollars-per-gram ($ per g) is found to increase linearly with the number of synthetic steps required to produce each organic photoactive compound. We estimate the cost-per-Watt ($ per Wp) as a function of power conversion efficiency (PCE) for an archetypal OPV structure and find that a relatively simple molecule requiring only 3 synthetic steps will contribute a cost of 0.001 to 0.01 $ per Wp, given a solar module PCE of 10%. In contrast, a relatively complicated molecule requiring 14 synthetic steps will contribute costs in the range of 0.075 to 0.48 $ per Wp. Our findings suggest that the commercial viability of an OPV technology may depend on the synthetic accessibility of its constituent active layer materials. Additionally, this work stresses the importance of optimizing synthetic routes to minimize solvent and reagent usage as well as to minimize the number of required workup procedures in the scaled production of OPV materials.

Graphical abstract: Effect of synthetic accessibility on the commercial viability of organic photovoltaics

Supplementary files

Article information

Article type
Analysis
Submitted
19 Nov 2012
Accepted
11 Jan 2013
First published
01 Feb 2013

Energy Environ. Sci., 2013,6, 711-718

Effect of synthetic accessibility on the commercial viability of organic photovoltaics

T. P. Osedach, T. L. Andrew and V. Bulović, Energy Environ. Sci., 2013, 6, 711 DOI: 10.1039/C3EE24138F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements