Issue 4, 2013

Organic solar cells featuring nanobowl structures

Abstract

Although organic solar cells having a bilayer configuration provide continuous conducting pathways for carrier transport to the requisite electrodes, their efficiencies have remained low because of the short exciton diffusion lengths of organic semiconductors. In this paper, we describe unique spatial organic solar cells featuring nanobowl array structures that capture more light and generate more power than planar organic solar cells. To construct bilayer solar cells, we used electrochemical deposition (with polystyrene beads as the template) to fabricate poly(3,4-ethylenedioxythiophene) nanobowl arrays, functioning as the hole extraction layer, on indium tin oxide substrates and then deposited copper phthalocyanine and a fullerene (C60 or C70) to function as the active layer, onto the nanobowl arrays. By implementing this spatial structure, we could control the active layer's thickness, such that it would be suitable for exciton dissociation, while maintaining a high absorption of incident light (by increasing the absorber volume without decreasing the area of the donor–acceptor interface, such that the light path in the active layer was increased) and ensuring high exciton dissociation efficiency (by enlarging the donor–acceptor interface). Relative to an equally thick planar control active layer the photocurrent generated by such bilayer solar cells increased by approximately 90%.

Graphical abstract: Organic solar cells featuring nanobowl structures

Article information

Article type
Paper
Submitted
19 Nov 2012
Accepted
30 Jan 2013
First published
30 Jan 2013

Energy Environ. Sci., 2013,6, 1192-1198

Organic solar cells featuring nanobowl structures

H. Wei, J. Huang, C. Hsu, F. Chang, K. Ho and C. Chu, Energy Environ. Sci., 2013, 6, 1192 DOI: 10.1039/C3EE24128A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements