Issue 3, 2013

Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions

Abstract

Lithium based battery technologies are increasingly being considered for large-scale energy storage applications such as grid storage associated with wind and solar power installations. Safety and cost are very significant factors in these large scale devices. Ionic liquid (IL) electrolytes that are inherently non-volatile and non-flammable offer a safer alternative to mainstream lithium battery electrolytes, which are typically based on volatile and flammable organic carbonates. Hence, in recent years there have been many investigations of ionic liquid electrolytes in lithium batteries with some highly promising results to date, however in most cases cost of the anion remains a significant impediment to widespread application. Amongst the various possible combinations the dicyanamide (DCA) anion based ionic liquids offer exceptionally low viscosities and high conductivities – highly desirable characteristics for Li electrolyte solvents. DCA ILs can be manufactured relatively inexpensively because DCA is already a commodity anion, containing only carbon and nitrogen, which is produced in large amounts for the pharmaceutical industry. In this study we use the non-fluorinated ionic liquid N-methyl-N-butylpyrrolidinium dicyanamide to form non-volatile lithium battery electrolytes. We demonstrate good capacity retention for lithium metal and LiFePO4 in such electrolytes and discharge capacities above 130 mAh.g−1 at 50 °C. We show that it is important to control moisture contents in this electrolyte system in order to reduce capacity fade and rationalise this observation using cyclic voltammetry and lithium symmetrical cell cycling. Having approximately 200 ppm of moisture content produces the optimum cycling ability. We also describe plastic crystal solid state electrolytes based on the DCA anion in the lithium metal–LiFePO4 battery configuration and demonstrate over 150 mAh.g−1 discharge capacity without any significant capacity fading at 80 °C.

Graphical abstract: Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2012
Accepted
16 Jan 2013
First published
25 Jan 2013

Energy Environ. Sci., 2013,6, 979-986

Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions

H. Yoon, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth, A. S. Best and D. R. MacFarlane, Energy Environ. Sci., 2013, 6, 979 DOI: 10.1039/C3EE23753B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements