Issue 2, 2013

In situ fabrication of porous-carbon-supported α-MnO2nanorods at room temperature: application for rechargeable Li–O2 batteries

Abstract

Lithium–O2 cells can be considered the “holy grail” of lithium batteries because they offer much superior theoretical energy density to conventional lithium-ion systems. In this study, porous carbon-supported MnO2 nanorods synthesized at room temperature were explored as an electrocatalyst for rechargeable Li–O2 cells. Both high-energy X-ray diffraction and X-ray absorption fine-structure analyses showed that the prepared MnO2 exhibited a tetragonal crystal structure (α-MnO2), which has proved to be one of the most efficient catalysts to facilitate the charging of the Li–O2 cell. Under the current synthetic approach, α-MnO2 was uniformly distributed onto the surface of a carbon support, without disrupting the porous structure at the surface of the carbon cathode. As a result, the as-prepared catalysts demonstrated good electrochemical behavior, with a capacity of ∼1400 mA h g−1 (carbon + electrocatalyst) under a current density of 100 mA g−1 (carbon + electrocatalyst) during the initial discharge. The charge potential was significantly reduced, to 3.5–3.7 V, compared with most of the reported data, which are above 4.0 V. The mechanism of the capacity fade with cycling was also investigated by analyzing the cathode at different states of discharge–charge by X-ray photoelectron spectroscopy.

Graphical abstract: In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2012
Accepted
03 Dec 2012
First published
04 Dec 2012

Energy Environ. Sci., 2013,6, 519-531

In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries

Y. Qin, J. Lu, P. Du, Z. Chen, Y. Ren, T. Wu, J. T. Miller, J. Wen, D. J. Miller, Z. Zhang and K. Amine, Energy Environ. Sci., 2013, 6, 519 DOI: 10.1039/C2EE23621D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements