Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Theoretical and experimental studies have been performed to simulate and optimize graphene/semiconductor heterojunction solar cells. By controlling graphene layer number, tuning graphene work function and adding an antireflection film, a maximal theoretical conversion efficiency of ∼9.2% could be achieved. Following the theoretical optimization proposal, the Schottky junction solar cells with modified graphene films and silicon pillar arrays were fabricated and were found to give a conversion efficiency of up to 7.7%.

Graphical abstract: Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function

Page: ^ Top