Issue 40, 2013

Catalyst activity or stability: the dilemma in Pd-catalyzed polyketone synthesis

Abstract

A series of Pd-complexes containing nonsymmetrical bis(aryl-imino)acenaphthene (Ar-BIAN) ligands, characterized by substituents on the meta positions of the aryl rings, have been synthesized, characterized and applied in CO/vinyl arene copolymerization reactions. Crystal structures of two neutral Pd-complexes have been solved allowing comparison of the bonding properties of the ligand. Kinetic and mechanistic investigations on these complexes have been performed. The kinetic investigations indicate that in general ligands with electron-withdrawing substituents give more active, but less stable, catalytic systems, although steric effects also play a role. The good performance observed with nonsymmetrical ligands is at least in part due to a compromise between catalyst activity and lifetime, leading to a higher overall productivity with respect to catalysts based on their symmetrical counterparts. Additionally, careful analysis of the reaction profiles provided information on the catalyst deactivation pathway. The latter begins with the reduction of a Pd(II) Ar-BIAN complex to the corresponding Pd(0) species, a reaction that can be reverted by the action of benzoquinone. Then the ligand is lost, a process that appears to be facilitated by the contemporary coordination of an olefin or a CO molecule. The so formed Pd(0) complex immediately reacts with another molecule of the initial Pd(II) complex to give a Pd(I) dimeric species that irreversibly evolves to metallic palladium. Mechanistic investigations performed on the complex with a nonsymmetrical Ar-BIAN probe evidence that the detected intermediates are characterized by the Pd–C bond trans to the Pd–N bond of the aryl ring bearing electron-withdrawing substituents. In addition, the intermediate resulting from the insertion of 4-methylstyrene into the Pd–acyl bond is a five-member palladacycle and not the open-chain η3-allylic species observed for complexes with Ar-BIANs substituted in ortho position.

Graphical abstract: Catalyst activity or stability: the dilemma in Pd-catalyzed polyketone synthesis

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2013
Accepted
19 Jul 2013
First published
19 Jul 2013

Dalton Trans., 2013,42, 14583-14602

Catalyst activity or stability: the dilemma in Pd-catalyzed polyketone synthesis

F. Amoroso, E. Zangrando, C. Carfagna, C. Müller, D. Vogt, M. Hagar, F. Ragaini and B. Milani, Dalton Trans., 2013, 42, 14583 DOI: 10.1039/C3DT51425K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements