Issue 40, 2013

Zn2+/Cd2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units

Abstract

Four new fluorescent chemosensors for metal ions based on 8-hydroxyquinoline (8-HDQ) derivatives and sulfur-containing macrocyclic units were synthesized and characterized, namely 1-(5-chloro-8-hydroxy-7-quinolinylmethyl)-1-aza-4,7,10-trithiacyclododecane (L1), 1-(5-chloro-8-hydroxy-7-quinolinylmethyl)-1-aza-4,13-dithia-7,10-dioxacyclopentadecane (L2), 1-(8-hydroxy-2-quinolinylmethyl)-1-aza-4,7,10-trithiacyclododecane (L3), and 1-(8-hydroxy-2-quinolinylmethyl)-1-aza-4,13-dithia-7,10-dioxacyclopentadecane (L4). Preliminary fluorimetric titrations indicated L1 as the only member of the family of ligands to give a selective CHEF-type response to the presence of Zn2+ in MeCN–H2O (1 : 1, v/v) solutions, which allowed imaging of this metal ion in Cos-7 cells in vitro. The other ligands either did not show any fluorescence response (L3, L4) to any of the metal ions considered (Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+) or gave (L2) a CHEF-type response also to the presence of Cd2+. The coordination properties of L1 towards Zn2+ were, therefore, fully investigated by potentiometric measurements and absorption and emission spectroscopy at different pH values, which indicated that the formation of 2 : 1 L1/Zn2+ complexes is responsible for the CHEF-type effect observed. The complexes [Zn(L1)2H2O](BF4)2 and [Zn(L3)](ClO4)2 were characterized in the solid state by X-ray crystallography, and DFT calculations were performed to understand the origin of the Zn2+/Cd2+ optical discrimination of the 8-HDQ-based “conjugate” fluorescent chemosensors reported.

Graphical abstract: Zn2+/Cd2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2013
Accepted
06 Aug 2013
First published
07 Aug 2013

Dalton Trans., 2013,42, 14516-14530

Zn2+/Cd2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units

M. C. Aragoni, M. Arca, A. Bencini, C. Caltagirone, A. Garau, F. Isaia, M. E. Light, V. Lippolis, C. Lodeiro, M. Mameli, R. Montis, M. C. Mostallino, A. Pintus and S. Puccioni, Dalton Trans., 2013, 42, 14516 DOI: 10.1039/C3DT51292D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements