Issue 11, 2013

Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts

Abstract

The homogeneous versus heterogeneous nature of the active site of gold catalysis of the 4-nitrophenol reduction to 4-aminophenol is investigated using poisoning experiments that employ various organic ligands and 4 nm gold nanoparticles as catalysts. DDT (dodecanethiol)-bound gold nanoparticles are unable to catalyze this reaction, whereas nanoparticles capped with calixarene ligands consisting of calix[6]arene phosphine C6P and calix[4]arene thiol MBC are active. Poisoning of residual terrace sites upon addition of 2-naphthalenethiol (2-NT) in these latter two catalysts results in a gold nanoparticle that consists solely of ostensibly similar pinhole defect sites. However, the reaction rate for the catalyst consisting of C6P + 2-NT is 6.5-fold higher relative to the rate for catalyst consisting of MBC + 2-NT. This observation along with lack of activity for the DDT-bound catalyst suggests that pinhole defect sites and the gold nanoparticle surface cannot be the active site for catalysis. Instead, the active site is suggested to be a leached gold species that is present in exceedingly small concentrations (cannot be detected by disappearance of gold nanoparticles from solution during catalysis). Such a supposition is supported by observations of induction time and the interplay between observed induction time and kinetics. It is observed that the composition of the organic ligands in the system controls the kinetics and the induction time. Additionally, there is an absence of an induction time in a solution containing used catalyst, to which reactants are added. In the initial catalysis, it is observed that as the thiol ligand concentration on the surface increases, the induction time increases and the reaction rate decreases. The leached species were unable to be detected via changes in the surface-plasmon resonance absorption of the gold nanoparticles in solution before and after catalysis, as well as electron microscopy studies of used nanoparticle catalysts. This suggests that the leached species concentration is low, and their catalytic activity in turn must be quite high.

Graphical abstract: Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2013
Accepted
25 Jun 2013
First published
25 Jun 2013

Catal. Sci. Technol., 2013,3, 2976-2983

Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts

M. M. Nigra, J. Ha and A. Katz, Catal. Sci. Technol., 2013, 3, 2976 DOI: 10.1039/C3CY00298E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements