Porous carbons and porous carbon nitrides are well known support materials. Some of these materials are, however, not only a geometric construct for immobilization, enabling mass transport at the same time, but contribute due to their extended electronic structure to a potential catalytic event as such. When appropriate band schemes and electron reactivity are chosen, immobilized metal nanoparticles can exhibit a highly enhanced chemical reactivity. This is due to electronic interaction and electron transfer between the metal and semiconductor, as introduced by Mott and Schottky for planar metal–semiconductor interfaces. A rational choice of mesoporous semiconductor and metal particle allows to create a new generation of catalysts and catalytic schemes with unparalleled performances. This tutorial review highlights the latest development in the synthesis and applications of mesoporous N-doped carbon and carbon nitride supported metal nanoparticles, and concentrates on the catalytic effect of the charge transfer between the metal nanoparticles and semiconductive components.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?