Jump to main content
Jump to site search

Issue 9, 2013
Previous Article Next Article

Direct synthesis of ordered mesoporous carbons

Author affiliations


Ordered mesoporous carbon materials have recently aroused great research interest because of their widespread applications in many areas such as adsorbents, catalysts and supports, gas storage hosts, and electrode materials. The direct synthesis strategy from organic–organic self-assembly involving the combination of polymerizable precursors and block copolymer templates is expected to be more flexible in preparing mesoporous carbons, compared with the traditional nanocasting strategy of complicated and high-cost procedures using mesoporous silica materials as the hard template. In this review, we present the fundamentals and recent advances related to the field of ordered mesoporous carbon materials from the direct synthesis strategy of block copolymer soft-templating, with a focus on their controllable preparation, modification and potential applications. Under the guidance of their formation mechanism, the preparation of ordered mesoporous carbons are discussed in detail by consulting different experimental conditions, including synthetic pathways, precursors, catalysts and templates. Both the mesopore size and morphology control are introduced. The potential applications of pure mesoporous carbons, nonmetallic- and metallic-modified mesoporous carbons, and some interpenetrating carbon-based composites are demonstrated. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of the ordered mesoporous carbons (232 references).

Graphical abstract: Direct synthesis of ordered mesoporous carbons

Back to tab navigation

Publication details

The article was received on 31 Jul 2012 and first published on 07 Nov 2012

Article type: Review Article
DOI: 10.1039/C2CS35301F
Chem. Soc. Rev., 2013,42, 3977-4003

  •   Request permissions

    Direct synthesis of ordered mesoporous carbons

    T. Ma, L. Liu and Z. Yuan, Chem. Soc. Rev., 2013, 42, 3977
    DOI: 10.1039/C2CS35301F

Search articles by author