Issue 47, 2013

Dynamic nuclear polarization of spherical nanoparticles

Abstract

Spherical silica nanoparticles of various particle sizes (∼10 to 100 nm), produced by a modified Stoeber method employing amino acids as catalysts, are investigated using Dynamic Nuclear Polarization (DNP) enhanced Nuclear Magnetic Resonance (NMR) spectroscopy. This study includes ultra-sensitive detection of surface-bound amino acids and their supramolecular organization in trace amounts, exploiting the increase in NMR sensitivity of up to three orders of magnitude via DNP. Moreover, the nature of the silicon nuclei on the surface and the bulk silicon nuclei in the core (sub-surface) is characterized at atomic resolution. Thereby, we obtain unique insights into the surface chemistry of these nanoparticles, which might result in improving their rational design as required for promising applications, e.g. as catalysts or imaging contrast agents. The non-covalent binding of amino acids to surfaces was determined which shows that the amino acids not just function as catalysts but become incorporated into the nanoparticles during the formation process. As a result only three distinct Q-types of silica signals were observed from surface and core regions. We observed dramatic changes of DNP enhancements as a function of particle size, and very small particles (which suit in vivo applications better) were hyperpolarized with the best efficiency. Nearly one order of magnitude larger DNP enhancement was observed for nanoparticles with 13 nm size compared to particles with 100 nm size. We determined an approximate DNP penetration-depth (∼4.2 or ∼5.7 nm) for the polarization transfer from electrons to the nuclei of the spherical nanoparticles. Faster DNP polarization buildup was observed for larger nanoparticles. Efficient hyperpolarization of such nanoparticles, as achieved in this work, can be utilized in applications such as magnetic resonance imaging (MRI).

Graphical abstract: Dynamic nuclear polarization of spherical nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2013
Accepted
09 Oct 2013
First published
06 Nov 2013

Phys. Chem. Chem. Phys., 2013,15, 20706-20716

Dynamic nuclear polarization of spherical nanoparticles

Ü. Akbey, B. Altin, A. Linden, S. Özçelik, M. Gradzielski and H. Oschkinat, Phys. Chem. Chem. Phys., 2013, 15, 20706 DOI: 10.1039/C3CP53095G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements