Jump to main content
Jump to site search

Issue 32, 2013
Previous Article Next Article

CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach

Author affiliations

Abstract

The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory with lattice phonon dynamics. All these lithium silicates examined are insulators with band-gaps larger than 4.5 eV. By decreasing the Li2O/SiO2 ratio, the first valence bandwidth of the corresponding lithium silicate increases. Additionally, by decreasing the Li2O/SiO2 ratio, the vibrational frequencies of the corresponding lithium silicates shift to higher frequencies. Based on the calculated energetic information, their CO2 absorption capabilities were extensively analyzed through thermodynamic investigations on these absorption reactions. We found that by increasing the Li2O/SiO2 ratio when going from Li2Si3O7 to Li8SiO6, the corresponding lithium silicates have higher CO2 capture capacity, higher turnover temperatures and heats of reaction, and require higher energy inputs for regeneration. Based on our experimentally measured isotherms of the CO2 chemisorption by lithium silicates, we found that the CO2 capture reactions are two-stage processes: (1) a superficial reaction to form the external shell composed of Li2CO3 and a metal oxide or lithium silicate secondary phase and (2) lithium diffusion from bulk to the surface with a simultaneous diffusion of CO2 into the shell to continue the CO2 chemisorption process. The second stage is the rate determining step for the capture process. By changing the mixing ratio of Li2O and SiO2, we can obtain different lithium silicate solids which exhibit different thermodynamic behaviors. Based on our results, three mixing scenarios are discussed to provide general guidelines for designing new CO2 sorbents to fit practical needs.

Graphical abstract: CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach

Back to tab navigation

Supplementary files

Article information


Submitted
18 Apr 2013
Accepted
05 Jun 2013
First published
05 Jun 2013

Phys. Chem. Chem. Phys., 2013,15, 13538-13558
Article type
Paper

CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach

Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-Ibarra, D. C. Sorescu, D. R. Luebke and J. W. Halley, Phys. Chem. Chem. Phys., 2013, 15, 13538
DOI: 10.1039/C3CP51659H

Social activity

Search articles by author

Spotlight

Advertisements