Issue 26, 2013

DNA interaction with Actinomycin D: mechanical measurements reveal the details of the binding data

Abstract

We have studied the interaction between the anticancer drug Actinomycin D (ActD) and the DNA molecule by performing single molecule stretching experiments and atomic force microscopy (AFM) imaging. From the stretching experiments, we determine how the mechanical properties of the DNA–ActD complexes vary as a function of drug concentration, for a fixed DNA concentration. We have found that the persistence lengths of the complexes formed behave non-monotonically: at low concentrations of ActD they are more flexible than the bare DNA molecule and become stiffer at higher concentrations. On the other hand, the contour length increases monotonically as a function of ActD concentration. Using a two-sites quenched disorder statistical model recently developed by us, we were able to extract chemical parameters such as the intrinsic binding constant and the degree of cooperativity from these pure mechanical measurements, thus performing a robust characterization of the interaction. The AFM images, otherwise, were used to measure the bending angle size distribution that ActD introduces on the double-helix structure and the average number of bendings per DNA molecule as a function of drug concentration, two quantities that cannot be determined from the stretching experiments.

Graphical abstract: DNA interaction with Actinomycin D: mechanical measurements reveal the details of the binding data

Article information

Article type
Paper
Submitted
28 Feb 2013
Accepted
07 May 2013
First published
07 May 2013

Phys. Chem. Chem. Phys., 2013,15, 11070-11077

DNA interaction with Actinomycin D: mechanical measurements reveal the details of the binding data

E. C. Cesconetto, F. S. A. Junior, F. A. P. Crisafuli, O. N. Mesquita, E. B. Ramos and M. S. Rocha, Phys. Chem. Chem. Phys., 2013, 15, 11070 DOI: 10.1039/C3CP50898F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements